

SDG 7: Providing clean and renewable energy while not compromising green growth in China

Hancheng Dai [戴瀚程] Assistant Professor

Peking University •College of Environmental Sciences and Engineering

™ Homepage OR Researchgate **™**

UAS Spring Campus, Berlin, April 9-13, 2018

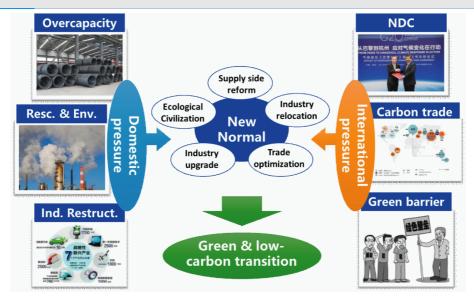
Overview

Introduction

Case study

Assessment of socio-economic impacts of developing renewable energy in China towards 2050 $\,$

Introduction


Dr. Binbin Wang, School of International Studies, PKU

Measurement of Public Awareness of Climate Change and Low-Carbon Behavior Choice in China

Binbin Wang

School of International Studies, PKU
April 10th, 2018
Berlin, Germany

Background: Green Low-carbon transition

1. Climate mitigation

- IPCC Assessment Report: Climate change resultes in many consequences such as glacier shrinkage, sea level rise, extreme weather and crop yield reduction etc.;
- Global target by this century 1.5 to 2 degree;

Background: Green Low-carbon transition

The Energy • Environment • Economy Systems

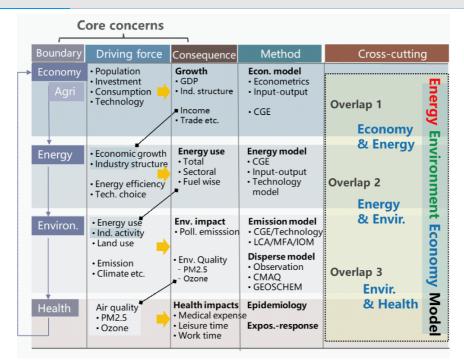
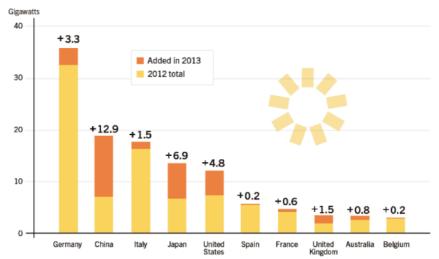
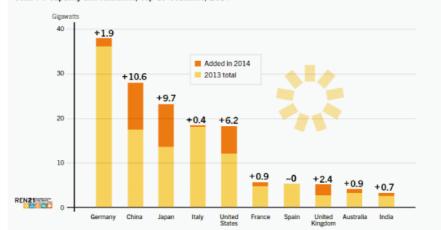
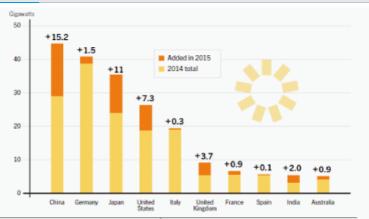
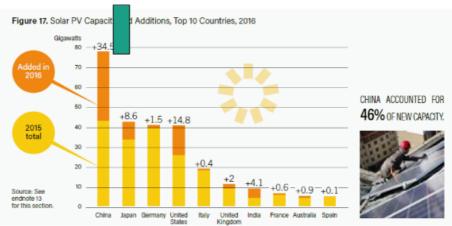



Figure 13. Solar PV Capacity and Additions, Top 10 Countries, 2013




Renewable Power Capacities in World, BRICS, EU-28 and Top 6 Countries, 2016 (Source: [1]).

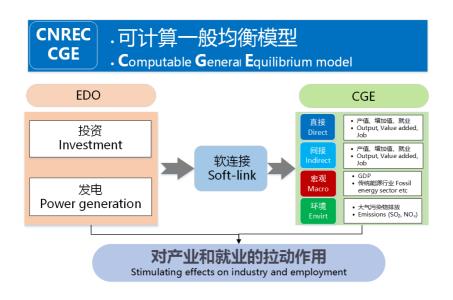
40 GW added in 2014


Solar PV Capacity and Additions, Top 10 Countries, 2014

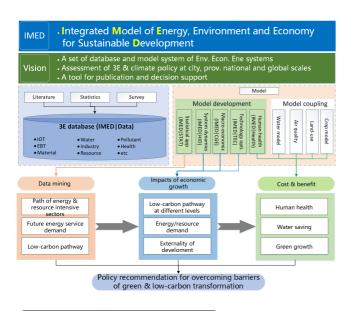
50 GW ADDED IN 2015

Renewable Power Capacities in World, BRICS, EU-28 and Top 6 Countries, 2016 (Source: [1]).

Case study


Case study

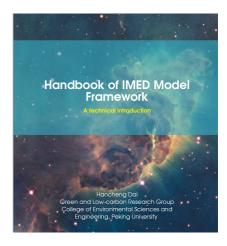
Assessment of socio-economic impacts of developing renewable energy in China towards 2050


Introduction

Study objectives

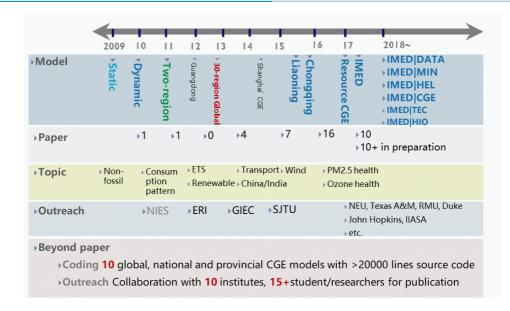
• The impacts of RE development on socio-economy and environment up to 2050

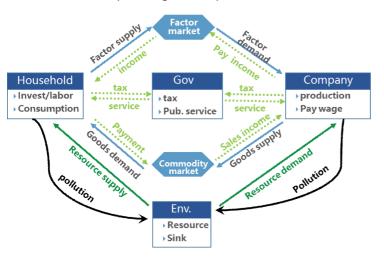
IMED Integrated assessment model ¹.



- Process based model;
- Data intensive;
- Stylized simulation: intensive assumption, highly uncertain but still conveys the main message quite well.

¹An up-to-date introduction here: http://scholar.pku.edu.cn/hanchengdai/imed_general

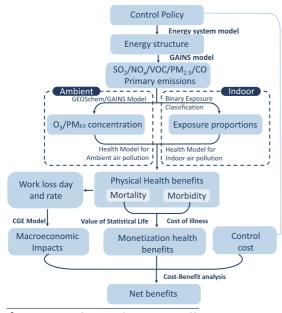

IMED Integrated assessment model


Full documents in Chinese and English freely available at: http://scholar.pku.edu.cn/hanchengdai/imed_general

Research History

IMED | CGE Model

IMED | CGE: Computable general equilibrium (CGE) model of economy ².


- Provide trajectories of future economic development;
- Multi-sector, multi-region, recursive dynamic CGE model;
- 30 provinces of China and 14 world regions;
- 22, 25, 33, and 91 sectors.

²An up-to-date introduction here: http://scholar.pku.edu.cn/hanchengdai/imedcge

IMED | CGE Model

Case studies:

- Taxation: Carbon tax [2, 3, 4, 5], Air Pollutant Tax [6];
- Contribution of renewable energy to: carbon intensity reduction [7, 8]; carbon emission trading [9, 10]; macroeconomy [11];
- Carbon emission trading in Guangdong [12, 13], Shanghai [14, 15], China [9];
- Impacts of household consumption pattern on energy consumption and carbon emissions [16, 17];
- Co-benefits of carbon reduction on resource use [18, 19];
- Co-benefits of carbon reduction on air pollution control [20];
- Impacts of carbon reduction on regional industrial competitiveness in Liaoning [2], Shanghai [3], Guangxi [21] and China [4];
- Soft-link with bottom-up technology model [22].

IMED[HEL model]: A health assessment model.

- Quantifying health and economic impacts caused by air pollution.
- Provide cost-benefit analysis of energy or air pollution control policy.
- Combining with many other models such as GAINS, energy system model and air quality model.

³An up-to-date introduction here: http://scholar.pku.edu.cn/hanchengdai/imedhel

Case studies:

- Impacts of PM_{2.5} pollution on health and economy [23, 24, 25, 26, 27]^{4 5 6 7 8};
- Impacts of ozone pollution on health and economy [28] 9.

⁹Yang Xie, Hancheng Dai*, Yanxu Zhang, Tatsuya Hanaoka and Toshihiko Masui (2017). "Economic impacts from ozone pollution-related health effects in China: A provincial-level analysis." Atmospheric Chemistry and Physics, Discussion paper.

[&]quot;Yang Xie, Hancheng Dai*, Huijuan Dong, Tatsuya Hanaoka and Toshihiko Masui (2016). "Economic impacts from PM_{2.5} pollution-related health effects in China: A provincial-level analysis." Environmental Science & Technology 50 (9): 4836 - 4843.

 $^{^5}$ 谢杨,戴瀚程,花岗达也,增井利彦 (2016). $^{\prime\prime}$ PM $_{2.5}$ 污染对京津冀地区人群健康影响和经济影响. $^{\prime\prime}$ 中国人口资源与环境 26(11): 20-28.

⁶Xiang Zhang, Yana Jin, Hancheng Dai, Yang Xie and Shiqiu Zhang (2018). "The health and economic benefits of "coal to electricity" policy in residential sector: Evidence from the Beijing-Tianjin-Hebei region in China." Applied Energy.

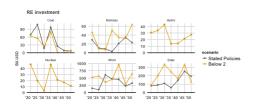
⁷Rui Wu, Hancheng Dai*, Yong Geng*, Yang Xie, Toshihiko Masui, Zhiqing Liu, Yiying Qian (2017). "Economic Impacts from PM_{2.5} Pollution-Related Health Effect: A Case Study in Shanghai." Environmental Science Technology. 51(9):5035-5042.

⁸Xu Tian, Hancheng Dai, et.al. (2018). "Economic Impacts from PM_{2.5} pollution-related health effects in China's road transport sector: a provincial-Level analysis." Environmental International (115): 220 - 229.

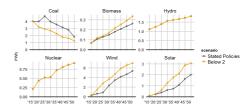
Scenario setting

Two scenarios are constructed from 2015 to 2050:

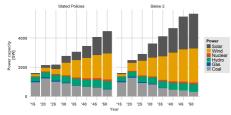
Stated Policies Reference scenario.

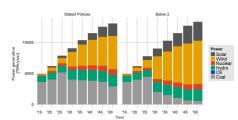

- The current ambitions for RE development correspond to minimum requirements for fulfilling the energy and environmental goals set for China to achieve by 2050.
- Coal is still the dominant fuel.

Below 2 More renewables and 2-degree target.


 Differs from the Stated Policies scenario with the amount of new wind and solar PV capacity and with the degree of electrification in the end-use sector.

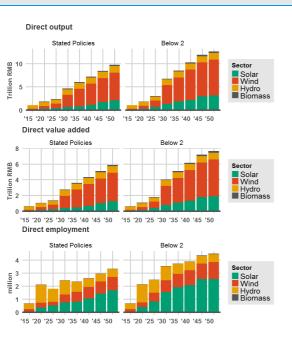
The **core** message is **how RE development benefits the economy**.


Scenario setting: the power sector



The power mix Power generation

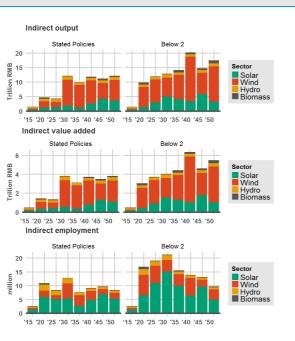
Power capacity



Key points in Below 2 in 2050

- No investment in coal after 2040.
- Most investment in wind (2320 GW, 665 bilUSD) and solar (2389 GW, 130 bilUSD).
- Renewable power rises from 71% to 89%, coal falls from 22% to 4%.

Direct impacts of RE

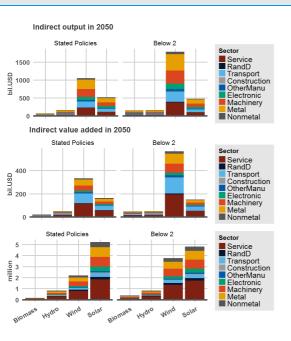

Key points in 2050

Total RE output in 2050: 12.6 triY (2010constant price), total value added: 7.6 triY, 2.9% of GDP.

™ Value added of hydro 0.85 TriY, wind 4.7 TriY, solar PV 1.89 TriY, biomass 0.21 triY.

Total direct employment > 4 million.

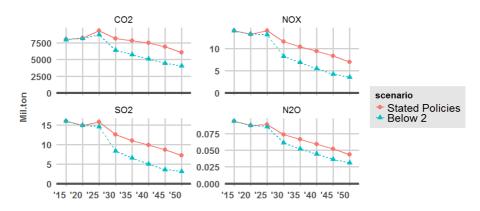
Indirect impacts of RE


Key points in 2050

Strong stimulating effects on upstream industries.

Stimulating effects on upstream industry 2050: 18.5 triy of output, 5.9 triy of value added, 2.2% of GDP, 10 million job indirectly

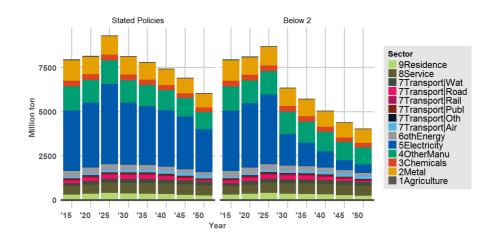
Energy and pollution intensive sectors are negatively affected, policy is needed to rellocate those jobs


Indirect impacts of RE in 2030

Key points

Key beneficial sectors: electronic manufacturing, machinery, R&D etc.

Air polluant emissions



Key points

Huge environmental co-benefits.

In 2050 Stated Policies scenario, due to energy saving, coal control and env. regulation, CO₂ reduces to 6 Gt, SO₂ 7 mil ton NO_x 7 mil ton (back to 1990 levels). In B2C, CO₂ further reduces by 2 Gt, SO₂ and NO_x reduce by 3 bil. ton.

Carbon Emissions

Conclusions

RE development has:

- Huge ecomonic benefits: contributes to >5% of GDP in 2050.
- Job creation: 4 million direct and over 10 million indirect jobs in 2050.
- Environmental benefits: reduction in CO₂ and air pollutant emissions.

However, policy is needed to offset the negative impacts related to the traditional energy sector.

Subscribe to our public blog on Wechat

Thank you for your attention! Questions?

Hancheng DAI Assistant Professor, Ph.D. Supervisor

Department of Environmental Management •Peking University •China dai.hancheng@pku.edu.cn

Uni Homepage / Researchgate / Google scholar