

Carbon Dioxide: Challenges and Opportunities for Chemistry and Society

Prof. Dr. Biprajit Sarkar 10.04.18 Spring Campus, 2018

Effect of Greenhouse Gases

The greenhouse gases make sure that our planet is warm enough to sustain (human) life

Too little or too much Greenhouse Gases

Mars: Thin atmosphere, too little greenhouse gases. Largely frozen surface.

Venus: 154,000 times more carbon dioxide than earth!

Very high surface temperature.

Hot enough to melt lead.

Prominent Greenhouse Gases

Water vapor is the only one that can cause re-precipitation and subsequent cooling

Is the amount of CO₂ in the atmosphere increasing?

Human contribution (most important): Deforestation and burning of fossil fuels

Current CO₂ level: 408 ppm

Some Effects of Greenhouse-Driven Climate Change

Short and long term effects.

The CO₂ already released in the atmosphere will stay on for quite a while!

Some Effects of Greenhouse-Driven Climate Change

An arctic without ice in sommer!

Solutions!

- There are no simple solutions to these problems.
- Any solution will have to take into account the "need" of human beings for a comfortable/luxurious life.
- The above point will reflect in votes: Political changes are not always easy!
- We need to move to a carbon-free or a closed-carbon energy supply (Financially viable?).
- However, use of fossil fuels is not going to stop in the next years.
- We already have too much greenhouse gases in the atmosphere and we need a solution for that.

Find ways and means of trapping the greenhouse gases and convert them into something "harmless" and useful.

Solutions: What can we convert CO₂ to?

or

CO₂

Formic Acid, HCOOH (preservative, anti-bacterial agent, leather, additives for slippery roads)

or

Methanol, CH₃OH (precursor to plastics/paints, liquid fuel, production of biodiesel)

And many other useful chemicals.....

General Principle

Electrocatalysis: Multiple electron and proton transfer

$$CO_2(aq) + e^- \rightarrow CO_2^{-\bullet}(aq) \quad E^{\circ\prime} = -1.9 \text{ V}$$
 $CO_2(g) + 2H^+ + 2e^- \rightarrow CO(g) + H_2O$
 $E^{\circ\prime} = -0.52 \text{ V}$
 $CO_2(g) + H^+ + 2e^- \rightarrow HCO_2^-(aq) \quad E^{\circ\prime} = -0.43 \text{ V}$
 $CO_2(g) + 6H^+ + 6e^- \rightarrow CH_3OH(aq) + H_2O$
 $E^{\circ\prime} = -0.38 \text{ V}$

2008, Bell/DOE Report:

"The major obstacle preventing efficient conversion of carbon dioxide into energy-bearing products is the lack of catalysts"

Challenge for Chemistry:
Development of efficient catalysts for CO₂ conversion.

13

Catalysts: Cost and lifetime

CO production

Chelating Neutral MICs: Electrocatalytic CO₂ Reduction

Catalysts: Cost and lifetime

CO production

B. Sarkar, L. Suntrup et al, Inorg. Chem. 2017, 56, 5771 and unpublished results.

Chelating Neutral MICs: Electrocatalytic CO₂ Reduction

B. Sarkar, L. Suntrup et al, Inorg. Chem. 2017, 56, 5771 and unpublished results.

Catalysts: Cost and lifetime

Formate production

Problems:

- Catalysts contain expensive and metals with low abundance
- Catalyst lifetime is not very high
- Recycling is not very efficient

Solutions:

- Catalysts based on inexpensive and earth-abundant metals (iron/cobalt/nickel/copper)
- Combine concepts from homogeneous and heterogeneous catalysis to get high selectivity and high lifetime

Acknowledgements

Past Members:

Dr. H. S. Das: IISER Kolkata

Dr. D. Schweinfurth: BASF

Dr. N. Deibel: Umicore

Prof. S. Hohloch: Paderborn

Dr. F. Weisser: Quintiles GmbH

Prof. R. Maity: Kolkata

Dr. M. van deer Meer: Henkel

Dr. M. G. Sommer: Wacker

Dr. L. Hettmanczyk

Freie Universität

Berlin

Acknowledgements

Current Members:

Sinja Klenk

Lisa Suntrup

Johannes Klein

Sebastian Sobottka

Uta Albold

Carolin Hoyer

Jessica Stubbe

Shubhadeep Chandra

Julia Beerhues

Simon Suhr

Merlin Kleoff

Tobias Bens

Dennis Schulze

Financial Support: DFG, FCI, AvH, DAAD, Carl-Zeiss Stiftung, BW-Stiftung, Studienstiftung des deutschen Volkes