SoSe 24: Algorithmen und Datenstrukturen
Wolfgang Mulzer
Kommentar
Qualifikationsziele
Die Studierenden analysieren4 Algorithmen und Datenstrukturen und ihre Implementierungen bezüglich Laufzeit, Speicherbedarf und Korrektheit und beschreiben2 verschiedene Algorithmen und Datenstrukturen für typische Anwendungen und wenden3 diese auf konkrete Beispiele an. Sie können passende Algorithmen und Datenstrukturen für gegebene Aufgaben auswählen4 und passen5 diese entsprechend an. Sie erklären2, identifizieren4 und verwenden5 verschiedene Entwurfsparadigmen für Algorithmen.
Inhalte
Studierende lernen das Maschinenmodell, sowie verschiedene algorithmische Probleme kennen. Sie erarbeiten und üben die Berechnung von Laufzeit, Korrektheit und Speicherbedarf dieser Algorithmen und lernen die asymptotische worst-case Analyse kennen. Darüber hinaus diskutieren sie die Rolle des Zufalls im Kontext des Entwurfs von Algorithmen. Des Weiteren erlernen und üben sie Entwurfsparadigmen für Algorithmen wie Teile und Herrsche, gierige Algorithmen, Dynamische Programmierung und Erschöpfende Suche. Sie lernen Prioritätswarteschlangen und effiziente Datenstrukturen für geordnete und ungeordnete Wörterbücher (z.B. ausgeglichene Suchbäume, Streuspeicher, Skiplisten) kennen und üben den Umgang mit ihnen. Zudem lernen sie Algorithmen für Zeichenketten (digitale Suchbäume und Suchen in Zeichenketten) und Graphenalgorithmen kennen, diskutieren deren Anwendung und üben den Umgang mit ihnen.
Schließen
Literaturhinweise
- P. Morin: Open Data Structures, an open content textboox.
- T. H. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, MIT Press, 2022.
- R. Sedgewick, K. Wayne: Algorithms, Addison-Wesley, 2011.
- M. Dietzfelbinger, K. Mehlhorn, P. Sanders. Algorithmen und Datenstrukturen: Die Grundwerkzeuge, Springer, 2014.
- J. Erickson. Algorithms, 2019
- T. Roughgarden. Algorithms Illuminated. Cambridge University Press, 2022.
28 Termine
Zusätzliche Termine
Di, 23.07.2024 12:00 - 14:00
Räume:
T9/053 Seminarraum (Takustr. 9)
Räume:
T9/055 Seminarraum (Takustr. 9)
Räume:
I Hörsaal (Vant-Hoff-Str. 8)
Regelmäßige Termine der Lehrveranstaltung
Weitere Suchergebnisse zu '%25252525252525252522Neurocognitive ...'
Qualifikationsziele
Die Studierenden analysieren4 Algorithmen und Datenstrukturen und ihre Implementierungen bezüglich Laufzeit, Speicherbedarf und Korrektheit und beschreiben2 ... Lesen Sie weiter