SoSe 24: Human Centered Data Science
Claudia Müller-Birn
Kommentar
Die Datenwissenschaft hat in den letzten Jahren ein rasantes Wachstum erlebt, das vor allem durch Fortschritte im maschinellen Lernen vorangetrieben wurde. Diese Entwicklung hat neue Möglichkeiten in einer Vielzahl von sozialen, wissenschaftlichen und technologischen Bereichen eröffnet. Es wird jedoch immer deutlicher, dass bei einer ausschließlichen Konzentration auf die statistischen und numerischen Aspekte der Datenwissenschaft soziale Nuancen und ethische Überlegungen häufig übersehen werden. Das Feld der Human-Centered Data Science (HCDS) entsteht, um diese Lücke zu schließen, und kombiniert Elemente der Mensch-Computer-Interaktion, der Sozialwissenschaften, der Statistik und der Numerik.
HCDS legt den Schwerpunkt auf die Grundprinzipien der Datenwissenschaft und ihre menschlichen Auswirkungen. Dazu gehören Forschungsethik, Datenschutz, rechtliche Rahmenbedingungen, algorithmische Voreingenommenheit, Transparenz, Fairness, Rechenschaftspflicht, Datenherkunft, Reproduzierbarkeit, User Experience Design, Human Computing und die gesellschaftlichen Auswirkungen der Datenwissenschaft.
Am Ende dieser Veranstaltung werden die Studierenden in der Lage sein
- Anwendung von Methoden des menschenzentrierten Designs in der datenwissenschaftlichen Praxis unter Berücksichtigung von ethischen Belangen und Datenschutzanforderungen
- einen reproduzierbaren datenwissenschaftlichen Arbeitsablauf zu konstruieren.
- Schlüsselbegriffe wie Bias, Fairness, Accountability, Transparenz und Interpretierbarkeit zu verstehen und zu differenzieren.
- Maßnahmen, Techniken und Frameworks anwenden, um ihre datenwissenschaftlichen Ergebnisse im Kontext der menschenzentrierten Erklärbaren KI (HC-XAI) interpretierbar zu machen.
- Datenwissenschaftliche Arbeitsabläufe mit qualitativen Forschungsansätzen zu verbessern.
- Sie sind sich der vorhandenen Maßnahmen, Techniken und Ansätze bewusst, die helfen, die datenwissenschaftlichen Praktiken zu reflektieren.
Die Studenten werden nicht nur die Kernkonzepte, Theorien und Praktiken der HCDS verstehen, sondern auch die verschiedenen Perspektiven, aus denen Daten gesammelt und verarbeitet werden können. Darüber hinaus erhalten die Studierenden einen Einblick in die potenziellen gesellschaftlichen Auswirkungen der aktuellen technologischen Fortschritte. Ziel dieses Kurses ist es, die Studierenden in die Lage zu versetzen, datenwissenschaftliche Techniken bewusst und gewissenhaft anzuwenden und dabei menschliche und gesellschaftliche Zusammenhänge zu berücksichtigen, was zu ethischeren, inklusiveren und sinnvolleren datengesteuerten Lösungen führt.
Literaturhinweise
Aragon, Cecilia, et al. "Developing a research agenda for human-centered data science." Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion. 2016.
Baumer, Eric PS. “Toward Human-Centered Algorithm Design.” Big Data & Society, 4(2), Dec. 2017.
Kogan, Marina, et al. "Mapping Out Human-Centered Data Science: Methods, Approaches, and Best Practices." Companion of the 2020 ACM International Conference on Supporting Group Work. 2020. pp. 151-156.
Schließen13 Termine
Zusätzliche Termine
Do, 25.07.2024 10:00 - 12:00Regelmäßige Termine der Lehrveranstaltung