SoSe 24: Softwareprojekt: Maschinelles Lernen in den Lebenswissenschaften
Katharina Baum
Kommentar
Während des Projektes werden wir verschiedene Machine-Learning (ML)-Methoden trainieren und die Ergebnisse evaluieren. Hierfür werden verschiedene, zum Teil große Datensätze aus ... Lesen Sie weiter
Während des Projektes werden wir verschiedene Machine-Learning (ML)-Methoden trainieren und die Ergebnisse evaluieren. Hierfür werden verschiedene, zum Teil große Datensätze aus dem Bereich der Lebenswissenschaften für das maschinelle Lernen vorbereitet und hinsichtlich einer vorher definierten Fragestellung analysiert. Die Fragestellung kann von uns ausgegeben und dicht an unseren Forschungsinteressen liegen oder gemeinsam mit uns erarbeitet werden. Eine konkrete Anwendung kann die personalisierte Medizin sein, wie etwa eine Vorhersage der Wirkung von Krebsmedikamenten anhand von umfassenden Daten von Krebszellen, oder auch zeitliche Vorhersagen, zum Beispiel von Infektionszahlen in Epidemien. Die Programmiersprache ist Python, und wir planen die Verwendung von modernen Python-Modulen für ML wie scikit-learn, TensorFlow oder PyTorch. Gute Python-Kenntnisse sind Voraussetzung. Das Ziel ist die Erstellung eines Python-Pakets, das für den konkreten Anwendungsfall wiederverwendbaren Code zur Präprozessierung, Training auf ML-Modelle und Evaluation der Ergebnisse mit Dokumentation (z.B. mit sphinx) liefert. Das Softwareprojekt findet semesterbegleitend statt.
Update 22.04.: Wir haben noch Plätze frei!
Bei Interesse und für die Anmeldung im CM meldet euch bitte bei uns pascal.iversen@fu-berlin.de und pauline.hiort@fu-berlin.de.
Wir bieten vorrausichtlich eins von zwei möglichen Projekten an:
(1) Active learning for drug reponse prediction in cancer: Das Projekt zielt darauf ab, durch aktives Lernen die Vorhersage von der Effizienz von Medikamenten bei Krebs mit Deep Learning Modellen zu verbessern.
(2) Deep learning for drug combination response prediction: Hier werdet ihr eine deep learning base-line implementieren für Medikamentenkombinationenvorhersagen und mit einer publizierten Methode vergleichen. Ihr werdet dann die Methoden mit randomisiertem Input testen.
Im Whiteboard finden Sie mehr Informationen dazu.