SoSe 24: Mathematik und Nachhaltigkeit
Georg Loho, Sofia Garzón Mora, Benedikt Weygandt
Kommentar
Leitidee
Ziel der Veranstaltung ist es, einen Überblick über die Bedeutung und Anwendbarkeit diverser mathematischer Gebiete im Kontext von Nachhaltigkeit zu bekommen. Ferner soll dies anhand kleinerer Probleme selbst angewendet werden können. Mathematik ist bekanntermaßen überall und besitzt eine hohe gesellschaftliche Relevanz. Insbesondere im Kontext Nachhaltigkeit sollten wir als mathematische Community Verantwortung übernehmen, einen lebenswerten Planeten zu erhalten und unsere Erkenntnisse, Methoden, Verfahren etc. gemeinwohlorientiert einzusetzen. Dies involviert auch die Aufbereitung und Kommunikation der behandelten mathematischen Themenbereiche.
Inhaltliche Schwerpunkte
Wir werden eine Einführung in die vier mathematischen Bereiche Optimierung, Spieltheorie, Statistik, Dynamische Systeme geben. Mittels mathematischer Modellierung werden wir identifizieren, wie diese Bereiche zum Verständnis und mit Lösungsansätzen zu Klimakrise, Verlust von Biodiversität, Ressourcenverknappung und sozialer Ungleichheit beitragen.
Methodische Konzeption
Diese Veranstaltung wird durch ein zeitgemäßes didaktisches Konzept begleitet. Dazu gehört unter anderem student agency und co-agency. Dies bedeutet, dass Lernende Verantwortung für ihren Lernerfolg und Kompetenzzuwachs übernehmen, dabei aber natürlich nicht auf sich alleine gestellt sind, sondern auf diverse inhaltliche bzw. methodische Ressourcen zurückgreifen können.
Grundsätzlich gliedert sich die Veranstaltung in zwei wöchentliche Blöcke:
- Donnerstag 10–12 Uhr
Die Vorlesungstermine dienen der kompakten Aufbereitung mathematischer Gebiete und bilden damit die fundamentale Grundlage für die Projektarbeit. Wir geben damit einen Einblick in diverse mathematische Gebiete und ihrem Anwendungsbezug. - Montag 10 – 14 Uhr
Die Projektarbeitsphase dient dem agilen Arbeiten in Kleingruppen, welche über das Semester verteilt mehrere Anwendungen von Mathematik in SDG-Kontext erarbeiten und aufbereiten. Dabei wird sich an der Methode eduSCRUM orientiert, um über das Semester verteilt in mehreren agilen Sprints über jeweils 2-3 Wochen fokussiert zu arbeiten. Erfahrungen im agilen Arbeiten werden nicht vorausgesetzt, hierzu gibt es eine methodische Prozessbegleitung. Die erarbeiteten Anwendungsszenarien sollen dabei jeweils passend zu den vier inhaltlichen Themenblöcken der Veranstaltung gestaltet werden, wobei die Kleingruppen durch den Einbau partizipativer Elemente an diversen Stellen Gestaltungsspielraum haben.
Lernziele
Die übergeordneten Lernziele dieser Veranstaltung verteilen sich auf fünf Bereiche: Mathematische Grundlagen verstehen und anwenden, Mathematische Modelle anwenden, Modelle beurteilen, Kommunikation von Mathematik im SDG-Kontext & Reflexion des eigenen Lernprozesses.
Nach erfolgreicher Teilnahme an der Veranstaltung haben Teilnehmer*innen die folgenden Kompetenzen erlangt:
- Sie verstehen die Bedeutung grundlegender mathematischer Konzepte und Verfahren (aus Optimierung, Spieltheorie, Statistik, Dynamische Systeme). Insbesondere können sie die Terminologie und mathematischen Aussagen präzise erklären und Anwendungsgebiete anhand ausgewählter inner- und außermathematischer Problemstellungen erläutern.
- Sie können mathematische Modelle nutzen, um reale Fragestellungen zu beschreiben und zu analysieren. Dabei können sie verschiedene mathematische Werkzeuge und Techniken verwenden, um qualitative und quantitative Aussagen über die Auswirkungen von Entscheidungen und Maßnahmen zu treffen.
- Sie können die Gültigkeit, Angemessenheit und Grenzen mathematischer Modelle beurteilen, indem sie etwa Modellannahmen, verwendete Daten oder Sensitivität der Ergebnisse analysieren, um fundierte Entscheidungen über die Nutzung dieser Modelle im Bereich nachhaltiger Entwicklung zu treffen.
- Die Ergebnisse mathematischer Analysen und Modelle können klar und prägnant an verschiedene Zielgruppen unter Nutzung verschiedener Medien und Formate kommuniziert werden. Dies geschieht mit dem Ziel, das gesellschaftliche Bewusstsein für die Bedeutung von Mathematik für BNE sowie transformative Prozesse zu fördern.
- Sie können die eigenen Lernerfahrungen reflektieren, indem sie individuelle Stärken, Lernstrategien, Einstellungen zur Mathematik und ihr mathematisches Selbstkonzept analysieren, um ihre mathematischen Kompetenzen weiterzuentwickeln und so später ihre Rolle als mündige und verantwortungsvolle Bürger*innen in der Gesellschaft auszufüllen.
Formalia & Organisatorisches
a) Für die regelmäßige Teilnahme ist regelmäßig und in Präsenz an den Terminen montags 10-14 Uhr teilzunehmen.
b) Die aktive Teilnahme an der Projektarbeit besteht aus mehreren Aspekten, die über das Semester verteilt in Kleingruppen bearbeitet werden:
- Im Rahmen der eduSCRUM-Sprints sollen in den Gruppen vier Anwendungsszenarien erarbeitet werden, wobei mindestens drei der vier Themenblöcke abgedeckt werden sollen.
- Um die Qualität der erarbeiteten Anwendungsszenarien zu sichern, führen die Gruppen untereinander ein Peer-Review-Verfahren durch.
- Dazu werden kleinere reale Probleme als Aufhänger und Ausgangspunkt für die Gruppenarbeit ausgewählt.
- Wöchentlich wird eine kleine mathematische Aufgabe als Challenge veröffentlicht. Jede Gruppe wird dabei eines der Probleme aus dem jeweiligen Themenblock lösen.
c) Modulabschlussprüfung: Die Veranstaltung kann entweder als „Mathematisches Projekt“ oder alternativ als mathematisch Spezial- bzw. Vertiefungsvorlesung belegt werden. (Dies geschieht, um Ihnen bei Interesse am Thema „Mathematik und Nachhaltigkeit“ größtmögliche Flexibilität und Anrechenbarkeit zu ermöglichen.) Beide Module entsprechen vom Workload-Umfang 10 LP, unterscheiden sich jedoch minimal in der Abschlussprüfung.
- Mathematisches Projekt: Aufbauend auf Ihrer in Kleingruppen erfolgten Projektarbeiten findet am Ende ein ca. halbstündiger Vortrag zu einem mathematischen Thema statt. Die Themen werden einige Tage vor der Prüfung zugeteilt, sodass Sie sich als Gruppe vorbereiten können. Zusätzlich zum Vortrag schreiben Sie eine Ausarbeitung im Umfang von ca. 2.500 Wörtern, in der u.a. Ihr persönlicher Beitrag zur Projektarbeit vorgestellt und reflektiert wird. Details zum Aufbau der schriftlichen Ausarbeitung werden in der Lehrveranstaltung bekanntgegeben.
- Vertiefungsvorlesung: Je nachdem, wie viele Studierende welchen Schein absolvieren möchten, werden wir für dieses Modulabschlussprüfungen eine Klausur oder mündliche Einzelprüfungen durchführen. Die Details werden bekanntgegeben, sobald bekannt ist, wie viele Studierende sich für welches Modul eingeschrieben haben.
Weitere Hinweise
Hinweis für Lehramts-Masterstudierende: Ergänzend zu dieser Veranstaltung findet ein fachdidaktisches Vertiefungsseminar (LV 19230015) statt. Dort werden digitale offene Bildungsmaterialien (OER) erstellt, mit denen die Bedeutung der Mathematik zur Erreichung der 17 Sustainable Development Goals vermittelt werden kann.
Schließen26 Termine
Regelmäßige Termine der Lehrveranstaltung
Leitidee
Ziel der Veranstaltung ist es, einen Überblick über die Bedeutung und Anwendbarkeit diverser mathematischer Gebiete im Kontext von Nachhaltigkeit zu ... Lesen Sie weiter