Integrative Analyse lebenswissenschaftlicher Daten und Einbeziehung von Vorwissen
Katharina Baum
Kommentar
Gerade in den Lebenswissenschaften liegen für eine Fragestellung oft Daten verschiedener Herkunft vor, und die Forschung hat bereits Vorwissen, wie zum Beispiel zu dynamischen Aspekten, oder räumlichen bzw. regulatorischen Beziehungen zwischen Entitäten. Diese Veranstaltung beschäftigt sich mit Analyse-Methoden, die verschiedene Daten und Vorwissen kombinieren können. Dabei geht es zum Beispiel grundlegend um die Verknüpfung von kontinuierlichen und kategorischen Daten in gemischten Modellen, aber auch Netzwerkintegration und multi-faktorielle Matrixmultiplikation. Ein Schwerpunkt liegt zudem auf verschiedenen Ansätzen des informierten maschinellen Lernens wie zum Beispiel graph-neuronalen Netzwerke, Transferlernen oder aktuellen Verfahren aus der Forschung wie simulationsbasiertes Vortrainieren. Der Fokus liegt dabei explizit nicht auf der Verarbeitung von Bildern, sondern tabellarischer oder anderweitiger Daten. Die Veranstaltungsprache ist Englisch, aber Übungsaufgaben und Fragen können auch auf Deutsch beigetragen werden.
Schließen16 Termine
Regelmäßige Termine der Lehrveranstaltung
Weitere Suchergebnisse zu '%252525252522Neurocognitive Methods and ...'